碲锡铅可调谐激光器的光谱特性

张位在 曹根弟 朱筱春 王海龙

(中国科学院上海光学精密机械研究所)

提 要

本文报道了用水平无籽晶气相生长法(HUVT)制造的可调谐二极管激光器的性能参数,在12K温度下,脉冲阈值电流密度为370A/cm²,直流阈值电流密度为440A/cm²。在13K温度下的电流调谐率为0.15 cm⁻¹/mA。在400 mA工作电流下的温度调谐率为2.3 cm⁻¹/K。

半导体可调谐二极管激光器在高分辨率光谱学、大规模控制环境污染和分析混合气体 的轨迹方面已经被成功的利用。近年来这些激光器在外差接收和同位素分析方面的使用也 得到了改善,在研究化学反应方面的应用也越来越引起人们的注意。 二极管激光器的性能 参数对应用来说是非常重要的,本文将介绍我们研制的激光器的特性。

1. 测量 I-V 曲线

我们利用水平无籽晶气相生长的 Pbo.88Sno.12Te 单晶制成二极管激光器的尺寸是 200×90×500 µm^[1~2],将管芯装在特制的管座上,然后直接浸泡在装有液氮的杜瓦瓶 中,测量其在 77 K 下的 *I-V* 特性曲线,如图 1 所示。图 1 中 (a)为正常的 *I-V* 特性,随 着电压的增加,当加在器件两端的电压到达导通电压时,通过器件的电流呈超越性增加。另 外,从 *I-V* 特性中还可以得到器件的微分电阻。图 1(b)为不正常的 *I-V* 特性,从图中可以 看出导通电压不明显,说明激光器有漏电流通过。这样的二极管是不合乎要求的。

图 1 77K时的 I-V 特性曲线 Fig. 1 I-V characteri tics at 77K

收稿日期: 1983年12月26日

2. 测量 J_{th}-T 曲线

将二极管激光器安装在用氦气循环的温度稳定度为 0.0005 K 的致冷机中,在不同的温度下分别测量在脉冲和直流时的阈值电流密度,其脉冲重复频率为 300 C,脉宽为 2 μ s。直流采用稳流电源供电。测量结果列于表 1,画出的曲线如图 2 所示。在脉冲情况下,当热沉温度为 12 K 时,阈值电流密度 J_{th} 为 370 A/cm²,最高的受激温度可达 90 K, J_{th} 为 14.2 kA/cm²。当温度低于 40 K 时,阈值电流密度 J_{th} 随温度呈线性增加,当温度高于 40 K 时, J_{th} 迅速增加。在直流情况下,当热沉温度为 12 K 时,阈值电流密度 J_{th} 为 440 A/cm²,我们测到的最高连续受激的温度为 32 K,这时器件没有损坏。

表 1 HVT--147[#] 器件的阈值电流与温度的关系 Table 1 The relation for threshold current vs. temperature

T(K)	12	15	20	25	30	36	45	50	55	60	65	70	80	90
$I_{th}(mA)$	160	300	420	530	680	980	1200	1600	1900	2400	300 0	3800	4700	6200
$J_{\rm th} ({\rm kA/cm^2})$	0.37	0.68	0.97	1.22	1.58	2.26	2.77	3.70	4.39	5.55	6.92	8.55	11.2	14.35

图 2 阈值电流密度随温度变化的曲线 Fig. 2 Threshold current density vs. temperature 图 3 输出功率随电流变化曲线 Fig. 3 Output power vs. current

由于激光器离窗口较远,我们首先用透过率为50%(在10μm)的锗透镜放在致冷机窗 口外,将激光器的发射光变成平行光。然后用一个同样的锗透镜聚焦到 Hg1_zCdzTe 探测器

记录仪的 y 轴,同时在 x 轴输入电流信号,记录激光器 的单端输出功率随电流的变化曲线,如图 3 所示。从 图中可以看出,在没有完全接收到全功率的情况下,已 经具有较高的输出功率和较高的微分量子效率。

上,再经已校准放大倍数的放大器放大,并输入到函数

3. 测量电流调谐光谱

光谱调谐特性测试的方框图如图4所示。安装在 致冷机内的激光器在特定的温度下,加上一定的电流

554

发出激光经锗透镜和音叉斩波器被聚焦到光栅单色仪的入射狭缝上,从单色仪狭缝出射的 激光再经 Hg1-*Cd*Te 探测器接收,并经锁相放大器放大后输入到函数记录仪,记录激光光

图 5(a)~(e)是 HVT-147-2* 激光器 在 热 沉 温 度 为 13 K 时, 电 流 分 别为 300 mA, 400 mA, 500 mA, 600 mA, 700 mA 时的电流调谐光谱。从图中可以看出,在阈值附近,发射光谱是单纵模的,随着电流的增加出现少许几个纵模,并且纵模间隔稍有不同,这是模式

谱。

竞争和不稳定造成的。在小电流时, 纵模间隔约 2 cm^{-1} , 这与器件设计的 $500 \,\mu\text{m}$ 的腔长是一致的。电流调谐范围从 969 cm^{-1} 到 1026 cm^{-1} 。

4. 测量温度调谐光谱

图 6(a)~(d)为 HVT-147-2[#] 器件固定电流 *I*=400 mA 时,分别在 18 K,22 K,26 K 和 30 K 下的温度调谐光谱。从图中可以看出,随着温度的升高,光谱往短波方向移动,纵模 之间的间隔约 2 cm⁻¹,这也与 500 µm 腔长是一致的。当激光器工作在 30 K 和 32 K 时出现 单纵模输出,这是由于激光器工作在阈值电流附近的结果。温度 调 谐 范 围 从 980 cm⁻¹ 到 1039 cm⁻¹。图 6(e)是在上述温度调谐时,在 400 mA 不受激的情况下,加大电流到 500 mA 时的光谱。

Fig. 6 Temperature tuning spectrum (HVT-147-2) at 400 mA

5. 波长与工作电流的关系

图 7 为 HVT-147-2* 激光器在热沉温度为 13 K 时激光的频率和波长随工作电流的变化曲线,从图中可以看出,随着工作电流的增加,结温升高,激光器的禁带宽度变宽,波长变短,从而使频率增加。从图中还可以得到电流调谐率约为 0.15 cm⁻¹/mA。

图 8 波长和频率随工作温度变化的曲线 Fig. 8 Variation of the wavelength and frequency with the operating temperature in diode lasers

6. 波长与温度的关系

图 8 为 HVT-147-2* 激光器在 I = 400 mA 时的频率和波长随热沉温度的 变化 曲 线。 从图中可以看出, 热沉温度越高, 波长越短, 频率增加。从图中我们还可以得到温度调谐率 约为 2.3 cm⁻¹/K。

从以上多模调谐光谱可以看出,由于激光器的 I_{th}较低,放热量小,无论在电流调谐和温 度调谐范围内光谱都比较光滑稳定,并且只有少许几个纵模输出。这对于应用比较有利。 如果要做精细的调谐光谱,只要把激光器的台面宽度再变窄,进一步降低工作电流,就更容 易出现单纵模输出,放热量更小,这样就更容易得到高分辨率的调谐谱。

Spectrum characteristics of $Pb_{1-x}Sn_xTe$ tunable diode lasers

ZHANG WEIZAI CAO GENDI ZHU XIAOCHUN AND WANG HAILONG (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

(Received 26 December 1983)

Abstract

In this paper, the characteristics and parameters of the tunable diode laser fabricated by HUVG method are reported. At 12 K, the pulse threshold current density is about 370 A/cm^2 and CW threshold current density is about 440 A/cm². At 13 K, current tuning rate is about 0.15 cm⁻¹/mA; at 400 mA, temperature tuning rate is about 2.3 cm⁻¹/K.